当前位置: Nature » 神经科学 » 正文


标签:皮层 长期势差
摘要 : 在设计用来探索大脑怎样存储新信息同时又不会扰动旧记忆的实验中,Joseph Cichon 和Wen-Biao Gan对执行一系列运动学习任务的小鼠的大脑运动皮层中的神经元进行了钙成像研究。

 在设计用来探索大脑怎样存储新信息同时又不会扰动旧记忆的实验中,Joseph Cichon 和Wen-Biao Gan对执行一系列运动学习任务的小鼠的大脑运动皮层中的神经元进行了钙成像研究。不同的学习任务在不重叠的树突分枝中触发了钙离子的信号尖峰(可塑性的一个 标志),造成那些分枝上的棘突长时间强化。任务与树突分枝之间的这种特定联系当中间神经元类群失活时被中断,这说明当新的信息在各个神经元中被存储时“抑制”在维持分枝之间的分离中起一定作用。

Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity

The brain has an extraordinary capacity for memory storage, but how it stores new information without disrupting previously acquired memories remains unknown. Here we show that different motor learning tasks induce dendritic Ca2+ spikes on different apical tuft branches of individual layer V pyramidal neurons in the mouse motor cortex. These task-related, branch-specific Ca2+spikes cause long-lasting potentiation of postsynaptic dendritic spines active at the time of spike generation. When somatostatin-expressing interneurons are inactivated, different motor tasks frequently induce Ca2+ spikes on the same branches. On those branches, spines potentiated during one task are depotentiated when they are active seconds before Ca2+ spikes induced by another task. Concomitantly, increased neuronal activity and performance improvement after learning one task are disrupted when another task is learned. These findings indicate that dendritic-branch-specific generation of Ca2+ spikes is crucial for establishing long-lasting synaptic plasticity, thereby facilitating information storage associated with different learning experiences.

对应Nature杂志: 2015年04月09日Nature杂志精选

来源: Nature 浏览次数:1


RSS订阅 - 填写您的邮件地址,订阅我们的精彩内容: - 网站地图
网站联系电话:020-87540820 备案号:粤ICP备11050685号-8 增值电信业务经营许可证:粤B2-20120479
©2011-2015 生物帮 All rights reserved.